
When “Debugging” LLMs
Becomes Delusion

1 

Rethinking AI Through Systems Engineering

Raz Besaleli
ML Systems Engineer @ Mozilla.ai

©2025 mozilla.ai | Confidential and proprietary.  2 

Pretend we’re building an AI-powered dating app… 

GenAI + human-matchmaker logic is used to to build tailored dating profiles 1 

Onboarding asks ~50 questions (text/voice) to extract deep user data 

An algorithm generates matches 3 

If both parties agree, they unlock a chat via payment 4 

Users provide ongoing feedback on matches to improve the system 5 

??? → Profit! 6 

2 

http://mozilla.ai

©2025 mozilla.ai | Confidential and proprietary. ©2025 mozilla.ai | Confidential and proprietary.  3 

The Feedback Loop (In Theory) 

● Generalized policy cycle: engine could be a fine-tuned

LLM, a ranking algorithm, or any other matching logic. 

● Model updates can be manual or automatic:

human-driven fine-tuning, active learning, etc. 

● Feedback is the driving signal: user behavior directly

shapes future model behavior in some way 

http://mozilla.ai
http://mozilla.ai

©2025 mozilla.ai | Confidential and proprietary. ©2025 mozilla.ai | Confidential and proprietary.  4 

Zooming in a little… 

http://mozilla.ai
http://mozilla.ai

©2025 mozilla.ai | Confidential and proprietary. ©2025 mozilla.ai | Confidential and proprietary.  5 

… What could go wrong? 🤪  

Hidden safety hazards in the loop 

Misaligned incentives that may not
reflect reality 

Unstable coupling between core
subsystems 

Emergent Homogenization and
behavioral collapse 

http://mozilla.ai
http://mozilla.ai

©2025 mozilla.ai | Confidential and proprietary.  6 

Unstable Coupling Between Core
Subsystems 
● Onboarding and matching are tightly coupled through a dynamically unstable,

feedback-amplified, natural-language interface. 

● The impact of onboarding’s interactive QA on downstream matching is hard to measure

or isolate 

● When users change how they answer (natural variation, gaming, shortcuts, over-sharing,

under-sharing), the matching engine shifts too — and you can’t disentangle why or

where it’s happening 

 

NOTE: These are challenges, not non-starters—but you have to treat them as engineering

constraints, not afterthoughts. 

http://mozilla.ai

©2025 mozilla.ai | Confidential and proprietary.  7 

Emergent Homogenization and Behavioral Collapse 

● Eventually, the matching algorithm learns that 'success' means matching people with

conventionally attractive profiles and starts to form an emergent monolith of attraction 

● The system starts to eat itself: 

○ Everyone starts to get shown the same 10 faces 

○ Users reshape their profiles to fit the “successful” archetype, undermining the

system’s original behavioral assumptions. 

○ People start to burn out on algorithmic “sameness” 

○ Long-tail users start to leave: ‘this app isn’t built for people like me’ 

Hinge’s “most compatible,” Bumble’s “spotlight balancing,” and Tinder’s moves away from pure

ELO-style scoring all came years after the industry realized the system was collapsing. 

http://mozilla.ai

©2025 mozilla.ai | Confidential and proprietary.  8 

Hidden Safety Hazards 

● Training data reflects user behavior—for better or for worse. 

● Discriminatory outcomes (e.g. certain demographics systematically ranked lower) can

breach anti-discrimination law even if the bias is “emergent” 

● Users don’t consent to being part of “algorithmic experiments,” yet most apps quietly A/B

test attraction models in real time 

● Under the EU AI Act, a dating app’s recommendation system could be classified as

“high-risk” if it significantly affects people’s social lives or opportunities (which it does) 

http://mozilla.ai

©2025 mozilla.ai | Confidential and proprietary.  9 

Misaligned Incentives 

What They Say: “If we make people pay per match, it will weed out those with questionable

incentives” 

What Actually Happens: 

● The system monetizes validation, not compatibility 

● Turns loneliness into a revenue source, not a problem to solve 

● Rewards the system the most when users never quite succeed 

● Attracts high-intent spenders, not high-intent partners 

● Creates a perverse loop: pay → visibility → more matches → more pay → skewed

ecosystem 

http://mozilla.ai

©2025 mozilla.ai | Confidential and proprietary. ©2025 mozilla.ai | Confidential and proprietary.  10 

Who… 

The missing role 

… owns risk across the whole
system? 

… tracks how these feedback loops
interact? 

… is responsible for overall system
behavior, not just its parts? 

http://mozilla.ai
http://mozilla.ai

©2025 mozilla.ai | Confidential and proprietary. 

Introducing the ML
Systems Engineer 

11 

http://mozilla.ai

©2025 mozilla.ai | Confidential and proprietary. ©2025 mozilla.ai | Confidential and proprietary.  12 

✨ The Experiment ✨  
We’ve been running an experiment at Mozilla.ai where
we hired someone to… 

● Explicitly own system-level integrity; 
● Prototype cross-functional processes for

spotting and mitigating risks; 
● Build institutional memory of system behavior

beyond model metrics. 

THE LAB RAT :)

http://mozilla.ai
http://mozilla.ai
http://mozilla.ai

©2025 mozilla.ai | Confidential and proprietary.  13 

The one job: de-risk. 

http://mozilla.ai

©2025 mozilla.ai | Confidential and proprietary. ©2025 mozilla.ai | Confidential and proprietary.  14 

Systems Engineering: The Lore 

● Born in aero and defense (1940s-1960s) 
Emerged when projects like missile guidance, radar
networks, and Apollo made it impossible to treat
components in isolation — failures were systemic, not
local. 

● Created to manage complexity across domains 
Integrated hardware, software, communications, human
operators, logistics, and mission constraints into a single,
coherent system — something no individual team owned. 

● Focused on preventing failure 
Systems engineers were responsible for interfaces,
feedback loops, failure propagation, and lifecycle
behavior — not the components themselves, but the
space between them. 

http://mozilla.ai
http://mozilla.ai

©2025 mozilla.ai | Confidential and proprietary.  15 

Why Software Forgot Systems Engineering 

● Software ate the world faster than systems engineering could follow 

Startups optimized for velocity, not lifecycle traceability or cross-domain

coherence. 

● Modern roles evolved to focus on uptime, not system behavior 

SRE, DevOps, and MLOps are operational disciplines — focused on keeping things

running, not understanding how failures propagate. 

● “Move fast and break things” replaced “model the system” 

Software culture treated failure as cheap and reversible, assuming deterministic

components instead of adaptive, emergent ones. 

http://mozilla.ai

©2025 mozilla.ai | Confidential and proprietary.  16 

But, AI is different from traditional software. 

● AI systems aren’t deterministic — they’re adaptive and coupled 
Models learn from behavior, behavior learns from models, and the whole system
evolves unstably over time. 

● Failure is emergent, not local 
Bugs appear as feedback loops, drift, incentive misalignment, and sociotechnical
dynamics — not stack traces. 

● Modern compliance needs (and product reliability) mandate system
traceability 
If you can’t show how decisions were made, you can’t show they were allowed 

● No one owns the interfaces, assumptions, or propagation paths 
Exactly the space that systems engineers were created to manage. 
 

http://mozilla.ai

©2025 mozilla.ai | Confidential and proprietary. ©2025 mozilla.ai | Confidential and proprietary.  17 

Ok, but what is SE, actually? 
SE comes in many flavors, but they all orbit the same idea: think
about what you're building for, like, five minutes before you
actually build it. 

Variations include: 

● Document-based (DBSE) 
Requirements, interfaces, and risks live in formal docs 

● Model-based (MBSE) 
Everything becomes a diagram, for better or worse 

● Human Systems Engineering 
Treats people as integral subsystems, not afterthoughts 

● Agile Systems Engineering 
The whole V recreated each sprint, but lightweight. 

● … the list goes on 

http://mozilla.ai
http://mozilla.ai

©2025 mozilla.ai | Confidential and proprietary. ©2025 mozilla.ai | Confidential and proprietary.  18 

Systems Engineers vs Product Managers 

Product Manager 
(picks the poison) 

Systems Engineer 
(makes sure they are clearly labeled) 

The ‘what’ and ‘why’ 

Prioritize features, scope 

Balance user needs with business goals 

Frame the problem space 

Choose which risks the org accepts 

Drive delivery commitments 

Manage communication upward + outward 

Own market fit and tradeoffs 

Map boundaries and system constraints 

Model interfaces 

Anticipate failure modes 

Own lifecycle traceability 

Design degraded-mode operations 

Track cross-functional coupling 

Ensure decisions don’t violate
physics, ethics, compliance, or safety 

Maintain institutional memory of how
the system works 

Clarify assumptions 
Align system behavior with
product intent 

Define what success means 

Make tradeoffs explicit 

Identify risks early 

Ensure the system is buildable by
those who maintain it 

http://mozilla.ai
http://mozilla.ai

©2025 mozilla.ai | Confidential and proprietary. 

What Works & What Doesn’t 

19 

http://mozilla.ai

©2025 mozilla.ai | Confidential and proprietary. ©2025 mozilla.ai | Confidential and proprietary.  20 

Project Planning & CONOPS 

Project Planning 

● Define mission goals upfront 
● Freeze high-level requirements 
● Establish constraints early 
● Plan the entire lifecycle end-to-end 

CONOPS 

● Formalized use-cases and scenarios 
● Defined actors, responsibility flows 
● Stable operational modes 
● Assume predictable human behavior 

Traditional SE  Machine Learning SE 

Project Planning 

● Define system boundary… provisionally 
● Capture assumptions, not promises 
● Identify dangerous couplings early 
● Design for drift and iteration 

CONOPS 

● Intended use, not frozen workflows 
● Humans as variable, unreliable sensors 
● Multiple operational modes (especially bad ones) 
● Plan for emergent behavior 

http://mozilla.ai
http://mozilla.ai

©2025 mozilla.ai | Confidential and proprietary.  21 

Example — Project Planning & CONOPS 
 
 
“We’d like to build semantic search using RAG across all internal documents
so employees can find information faster.” 

What is wrong here? 

http://mozilla.ai

©2025 mozilla.ai | Confidential and proprietary.  22 

Example — Project Planning & CONOPS 
 
 
“We’d like to build semantic search using RAG across all internal documents
so employees can find information faster.” 

What is wrong here? 

Why are we jumping to RAG when we don’t even know… 

● Whether we can even deploy an LLM or use a third-party API 
● Whether hallucinations are even acceptable for this domain 
● If we’re legally allowed to paraphrase documents 
● How fast our knowledge base changes 
● If chunking the data is viable 
● Whether retrieval is even the bottleneck 

It may be the case that BM25 retrieval system + a small, span-based QA model may be
better. 

http://mozilla.ai

©2025 mozilla.ai | Confidential and proprietary. ©2025 mozilla.ai | Confidential and proprietary.  23 

Requirements 

● Requirements Traceability 
Keep link between intent -> design -> test ->
operations 

● Clear Functional Requirements 
Stating what the system must do—not how 

● Performance Requirements 
Latency, throughput, accuracy thresholds 

● Constraints & Assumptions 
Document physical, organizational, technical limits 

● Verification Planning 
Defining measures of performance (MoPs) and
measures of effectiveness (MoEs) 

Traditional SE  Machine Learning SE 

● Degraded Mode Requirements 
The system will misbehave frequently. What should
happen when it does? 

● Document Assumptions 
You will have lots. 

● Anti-Magic Requirements 
Every end-to-end functionality of the system should
be observable and falsifiable 

● Human-in-the-loop Requirements 
How and when do people intervene, override, or
course-correct? 

● Data Sourcing, Drift, and Freshness 
How do we keep the system up-to-date? 

http://mozilla.ai
http://mozilla.ai

©2025 mozilla.ai | Confidential and proprietary.  24 

Example — Requirements 
 
 
“The system shall generate SQL queries from natural language with 95%
accuracy.” 

What is wrong here? 

http://mozilla.ai

©2025 mozilla.ai | Confidential and proprietary.  25 

Example — Requirements 
 
 
“The system shall generate SQL queries from natural language with 95%
accuracy.” 

What is wrong here? 

Accuracy of what, exactly? 

● SQL correctness isn’t binary: syntax, semantics, joins, cardinality, permissions,
cost. 

● A query can be “correct” syntactically and still return nonsense or leak data. 
● “Accuracy” means something different to users, analysts, DBAs, and ML folks —

which one is this requirement talking about? 
● And are we assuming it will generate some SQL 100% of the time? What counts as

“accurate” when the model refuses? 

http://mozilla.ai

©2025 mozilla.ai | Confidential and proprietary. ©2025 mozilla.ai | Confidential and proprietary.  26 

Design & Specification 

Goal: Build a system whose components interact cleanly and
predictably 

Design Assumptions: Interface is stable, behavior is
deterministic, and components behave correctly unless
broken 

Design Strategies: 

● Clear subsystem boundaries 
● Frozen interfaces 
● Trade studies 
● No hidden side effects 
● Integration is primarily a coordination problem 

Traditional SE  Machine Learning SE 

Goal: Build a system whose failures are observable and
contained 

Design Assumptions: The model is unpredictable, “correct”
behavior is ill-defined, users will behave adversarially 

Design Strategies: 

● Composability over cleverness 
● Guardrail-first design 
● Instrumentation, not intuition 
● Containment boundaries 

http://mozilla.ai
http://mozilla.ai

©2025 mozilla.ai | Confidential and proprietary.  27 

Example — Design & Specification 
 
 
“We’ll let the LLM decide when to use tools based on ReAct. It can call
whatever it needs.” 

What is wrong here? 

http://mozilla.ai

©2025 mozilla.ai | Confidential and proprietary.  28 

Example — Design & Specification 
 
 
“We’ll let the LLM decide when to use tools based on ReAct. It can call
whatever it needs.” 

What is wrong here? 

● Ungoverned loops hide failure 
If the agent can invent steps on the fly, you can’t tell where it went off the rails —
only that the output is wrong. An explicitly defined finite state machine forces
failure to happen in public. 

● Unconstrained behavior = bad 
You shouldn’t assume that an agent can select the correct tool to call from an
unconstrained set at every step. 

● Safety demands a closed action space 
If the model can transition to any action at any time, you can’t enforce guardrails. 

http://mozilla.ai

©2025 mozilla.ai | Confidential and proprietary. ©2025 mozilla.ai | Confidential and proprietary.  29 

Verification & Validation 

● Verification = “Did we build it right?” 
Tests map cleanly to requirements. Behavior is
deterministic. 
Measured with MoPs 

● Validation = “Did we build the right thing?” 
Traceable to mission goals. Human acceptance is
stable. 
Measured with MoEs 

● Evaluation is finite. 
Test cases are enumerable and exhaustive. Pass/fail
is crisp. 

Traditional SE  Machine Learning SE 

● Verification requires coverage, not cases. 
Inputs are unbounded. Behavior is probabilistic. You
test distributions, not conditions. 

● Validation never finishes. 
User behavior shifts. Data drifts. Context changes.
You don’t validate once — you validate forever. 

● Emergent failures demand ongoing evals. 
Models develop new behaviors post-deployment.
Silent degradation is the norm unless you explicitly
measure for it. 

● Evaluation must be designed for adversarial
behavior 
Users will misuse and abuse the system in ways you
could not even imagine. 

http://mozilla.ai
http://mozilla.ai

©2025 mozilla.ai | Confidential and proprietary.  30 

Example — Verification & Validation 
 
 
“We’ll have an LLM evaluate model outputs for correctness.” 

 What is wrong here? 

http://mozilla.ai

©2025 mozilla.ai | Confidential and proprietary.  31 

Example — Verification & Validation 
 
 
“We’ll have an LLM evaluate model outputs for correctness.” 

 What is wrong here? 

● You are adding more failure modes to the system. 
If the judge and the model share failure modes, biases, or blind spots (they will),
the judge just rubber-stamps errors. 

● LLM judges hallucinate confidence in a way that is dangerous. 
You are effectively measuring vibes. 

● “Correctness” is not well-defined. 
An LLM-judge’s scoring depends on phrasing, temperature, token entropy, the list
goes on. These don’t yield metrics. These yield weather patterns. 

● Distribution mismatch is lethal. 
Your judge is validated on curated benchmarks, but deployed on messy,
real-world data. 

http://mozilla.ai

©2025 mozilla.ai | Confidential and proprietary.  32 

Would you trust an LLM to
judge your compatibility with
another human? 
 
Great! Regulators wouldn’t,
either. 

http://mozilla.ai

©2025 mozilla.ai | Confidential and proprietary. 

Risk 

33 

http://mozilla.ai

©2025 mozilla.ai | Confidential and proprietary. ©2025 mozilla.ai | Confidential and proprietary.  34 

The Cassandra Complex 

The curse of seeing a failure coming long before anyone
else — and not being believed until it’s too late. 

It’s less “prophecy,” more “unwelcome accuracy
delivered early.” 

http://mozilla.ai
http://mozilla.ai

©2025 mozilla.ai | Confidential and proprietary.  35 

Have you ever felt like a Cassandra at an AI company? 

http://mozilla.ai

©2025 mozilla.ai | Confidential and proprietary.  36 

AI companies like to dodge risk. 

http://mozilla.ai

©2025 mozilla.ai | Confidential and proprietary. ©2025 mozilla.ai | Confidential and proprietary.  37 

Having a Systems Engineer… Helps. 

Gives structural legitimacy to risk—a
person to own it 

"I have a bad feeling" → "Here's the failure
mode, likelihood, and mitigation options" 

Adds new dimension to institutional
memory 

http://mozilla.ai
http://mozilla.ai

©2025 mozilla.ai | Confidential and proprietary.  38 

Cassandra duty 

Systems Engineers & Risk 

Listening to the people who
see the cracks before anyone
else—especially when no one
else will 

Jester’s privilege (...or
curse) 

Saying the quiet part out loud
that no one else wants to hear 

Risk without panic 

Communicating danger
without triggering shutdown
or denial 

Emotional buffer 

Holding the anxiety so others
can keep building 

(alt. What they don’t teach you in SE school) 

http://mozilla.ai

©2025 mozilla.ai | Confidential and proprietary.  39 

The Risk Registry 
 
 
What it is: A living list of everything that could break the system, how likely it is, and
what we’re doing about it. 

The rules:  

● One owner keeps the map coherent. Everyone else contributes where they see
landmines. 

● Everything goes in the risk registry. No matter how large or small. 
● Periodically reviewed at a cadence that works for your team. 

Why it works:  

● Keeps risk visible instead of ambient 
● Gives everyone a space to voice concerns and feel heard 
● Prevents rediscovering the same failure twice 
● Weirdly… speeds up shipping 

http://mozilla.ai

©2025 mozilla.ai | Confidential and proprietary.  40 

Stop asking ‘is this going to
happen?’ 
 
Start asking ‘when it does,
what’s our plan?’ 

http://mozilla.ai

©2025 mozilla.ai | Confidential and proprietary.  41 

Interactive
Session 

http://mozilla.ai

©2025 mozilla.ai | Confidential and proprietary.  42 

Check out our GitHub! 
besaleli@mozilla.ai 

@besssaleli on X 

http://mozilla.ai

