Mozilla.ai

When “Debugging” LLIVIS
Becomes Delusion

Rethinking AI Through Systems Engineering

Raz Besaleli
ML Systems Engineer @ Mozilla.ai

Mozilla.oi

Pretend we’re building an AI-powered dating app...

1 GenAl + human-matchmaker logic is used to to build tailored dating profiles

2 Onboarding asks ~50 questions (text/voice) to extract deep user data

3 An algorithm generates matches

4 If both parties agree, they unlock a chat via payment

5 Users provide ongoing feedback on matches to improve the system

6 ??? - Profit!

©2025 mozilla.ai | Confidential and proprietary.

http://mozilla.ai

Mozilla.oi

User Inputs

The Feedback Loop (In Theory) l

e Generalized policy cycle: engine could be a fine-tuned Model/Policy

LLM, a ranking algorithm, or any other matching logic.

e Model updates can be manual or automatic: / \

human-driven fine-tuning, active learning, etc.

e Feedback is the driving signal: user behavior directly Match Output

shapes future model behavior in some way l

User Feedback

\ /

Policy Update

©2025 mozilla.ai | Confidential and proprietary.

http://mozilla.ai
http://mozilla.ai

Mozilla.oi

Zooming in a little...

Onboarding Subsystem Feedback Subsystem
UserLoop Collect Raw Feedback [—| 222
Profile Builder » | Profile Displayed User Actions (accept,
reject, message)
Interactive User QA
Matching Subsystem
Feature Extraction »| Match Engine
Update Models/Policies

©2025 mozilla.ai | Confidential and proprietary. 4

http://mozilla.ai
http://mozilla.ai

Mozilla.oi

... What could go wrong? (&

Unstable coupling between core
subsystems

Emergent Homogenization and
behavioral collapse

Hidden safety hazards in the loop

©2025 mozilla.ai | Confidential and proprietary.

Misaligned incentives that may not
reflect reality

http://mozilla.ai
http://mozilla.ai

Mozilla.oi

Unstable Coupling Between Core
Subsystems

Onboarding and matching are tightly coupled through a dynamically unstable,
feedback-amplified, natural-language interface.

e Theimpact of onboarding’s interactive QA on downstream matching is hard to measure
or isolate

e When users change how they answer (natural variation, gaming, shortcuts, over-sharing,
under-sharing), the matching engine shifts too — and you can’t disentangle why or

where it’s happening

NOTE: These are challenges, not non-starters—but you have to treat them as engineering

constraints, not afterthoughts.

©2025 mozilla.ai | Confidential and proprietary.

http://mozilla.ai

Mozilla.oi

Emergent Homogenization and Behavioral Collapse

e Eventually, the matching algorithm learns that 'success' means matching people with
conventionally attractive profiles and starts to form an emergent monolith of attraction
e The system starts to eat itself:
o Everyone starts to get shown the same 10 faces
o Users reshape their profiles to fit the “successful” archetype, undermining the
system’s original behavioral assumptions.
o People start to burn out on algorithmic “sameness”

o Long-tail users start to leave: ‘this app isn’t built for people like me’

L1

Hinge’s “most compatible,” Bumble’s “spotlight balancing,” and Tinder’s moves away from pure

ELO-style scoring all came years after the industry realized the system was collapsing.

©2025 mozilla.ai | Confidential and proprietary.

http://mozilla.ai

Mozilla.oi

Hidden Safety Hazards

e Training data reflects user behavior—for better or for worse.

e Discriminatory outcomes (e.g. certain demographics systematically ranked lower) can
breach anti-discrimination law even if the bias is “emergent”

e Users don’t consent to being part of “algorithmic experiments,” yet most apps quietly A/B
test attraction models in real time

e Underthe EU AI Act, a dating app’s recommendation system could be classified as

“high-risk” if it significantly affects people’s social lives or opportunities (which it does)

©2025 mozilla.ai | Confidential and proprietary.

http://mozilla.ai

Mozilla.oi

Misalighed Incentives

What They Say: “If we make people pay per match, it will weed out those with questionable

incentives”
What Actually Happens:

e The system monetizes validation, not compatibility

e Turns loneliness into a revenue source, not a problem to solve

e Rewards the system the most when users never quite succeed

e Attracts high-intent spenders, not high-intent partners

e Creates a perverse loop: pay = visibility = more matches = more pay - skewed

ecosystem

©2025 mozilla.ai | Confidential and proprietary.

http://mozilla.ai

Mozilla.oi

The missing role

Who...

... owns risk across the whole
system?

©2025 mozilla.ai | Confidential and proprietary.

... tracks how these feedback loops
interact?

... is responsible for overall system
behavior, not just its parts?

10

http://mozilla.ai
http://mozilla.ai

Mozilla.ai

Introducing the ML
Systems Engineer

©2025 mozilla.ai | Confidential and proprietary.

http://mozilla.ai

Mozilla.oi

The Experiment

We've been running an experiment at Mozilla.ai where
we hired someone to...

e Explicitly own system-level integrity;

e Prototype cross-functional processes for
spotting and mitigating risks;

e Build institutional memory of system behavior
beyond model metrics.

©2025 mozilla.ai | Confidential and proprietary.

THE LAB RAT)

N\

12

http://mozilla.ai
http://mozilla.ai
http://mozilla.ai

Mozilla.ai

The one job: de-risk.

©2025 mozilla.ai | Confidential and proprietary.

13

http://mozilla.ai

Mozilla.oi

Systems Engineering: The Lore

e Bornin aero and defense (1940s-1960s)

Emerged when projects like missile guidance, radar
networks, and Apollo made it impossible to treat
components in isolation — failures were systemic, not
local.

e Created to manage complexity across domains
Integrated hardware, software, communications, human
operators, logistics, and mission constraints into a single,
coherent system — something no individual team owned.

e Focused on preventing failure
Systems engineers were responsible for interfaces,
feedback loops, failure propagation, and lifecycle
behavior — not the components themselves, but the
space between them.

©2025 mozilla.ai | Confidential and proprietary. 14

http://mozilla.ai
http://mozilla.ai

Mozilla.oi

Why Software Forgot Systems Engineering

e Software ate the world faster than systems engineering could follow
Startups optimized for velocity, not lifecycle traceability or cross-domain
coherence.

e Modern roles evolved to focus on uptime, not system behavior
SRE, DevOps, and MLOps are operational disciplines — focused on keeping things
running, not understanding how failures propagate.

e “Move fast and break things” replaced “model the system”
Software culture treated failure as cheap and reversible, assuming deterministic

components instead of adaptive, emergent ones.

©2025 mozilla.ai | Confidential and proprietary.

15

http://mozilla.ai

Mozilla.oi

But, Al is different from traditional software.

e Al systems aren’t deterministic — they’re adaptive and coupled
Models learn from behavior, behavior learns from models, and the whole system
evolves unstably over time.

e Failure is emergent, not local
Bugs appear as feedback loops, drift, incentive misalignment, and sociotechnical
dynamics — not stack traces.

e Modern compliance needs (and product reliability) mandate system
traceability
If you can’t show how decisions were made, you can’t show they were allowed

e Noone owns the interfaces, assumptions, or propagation paths

Exactly the space that systems engineers were created to manage.

©2025 mozilla.ai | Confidential and proprietary. 16

http://mozilla.ai

Mozilla.oi

Ok, but what is SE, actually?

SE comes in many flavors, but they all orbit the same idea: think
about what you're building for, like, five minutes before you
actually build it.

Variations include:

e Document-based (DBSE)

Requirements, interfaces, and risks live in formal docs
e Model-based (MBSE)

Everything becomes a diagram, for better or worse
e Human Systems Engineering

Treats people as integral subsystems, not afterthoughts
e Agile Systems Engineering
The whole V recreated each sprint, but lightweight.
... the list goes on

©2025 mozilla.ai | Confidential and proprietary.

Project Planning

e ————
Validation
Concept of
Operations
e ——=
B R ———
Deployment and
Requirements Acceptance
e
e -
. Integration and
Design and Verification
Specifications
— e ——— e

Software / Hardware
Implementation

17

http://mozilla.ai
http://mozilla.ai

Mozilla.oi

Systems Engineers vs Product Managers

Product Manager Systems Engineer
(picks the poison) (makes sure they are clearly labeled)

Model interfaces

The ‘what’ and ‘why’

Anticipate failure modes

Prioritize features, scope Clarify assumptions

Align system behavior with
product intent

Map boundaries and system constraints

Balance user needs with business goals

Maintain institutional memory of how

Define what success means
the system works

Manage communication upward + outward

Make tradeoffs explicit

Choose which risks the org accepts Ensure decisions don’t violate

Ensure the system is buildable by physics, ethics, compliance, or safety

those who maintain it

Drive delivery commitments

Track cross-functional coupling

Frame the problem space

Identify risks early Design degraded-mode operations

Own market fit and tradeoffs . -
Own lifecycle traceability

©2025 mozilla.ai | Confidential and proprietary. 18

http://mozilla.ai
http://mozilla.ai

Mozilla.oi

What Works & What Doesn’t

©2025 mozilla.ai | Confidential and proprietary.

http://mozilla.ai

Mozilla.oi

Project Planning & CONOPS

Traditional SE Machine Learning SE

Project Planning Project Planning
e Define mission goals upfront e Define system boundary... provisionally
e Freeze high-level requirements e Capture assumptions, not promises
e Establish constraints early e Identify dangerous couplings early
e Plan the entire lifecycle end-to-end e Design for drift and iteration

CONOPS CONOPS
e Formalized use-cases and scenarios e Intended use, not frozen workflows
e Defined actors, responsibility flows e Humans as variable, unreliable sensors
e Stable operational modes e Multiple operational modes (especially bad ones)
e Assume predictable human behavior e Plan for emergent behavior

©2025 mozilla.ai | Confidential and proprietary.

20

http://mozilla.ai
http://mozilla.ai

Mozilla.oi

Example — Project Planning & CONOPS

“We’d like to build semantic search using RAG across all internal documents
so employees can find information faster.”

What is wrong here?

©2025 mozilla.ai | Confidential and proprietary.

21

http://mozilla.ai

Mozilla.oi

Example — Project Planning & CONOPS

“We’d like to build semantic search using RAG across all internal documents
so employees can find information faster.”

What is wrong here?

Why are we jumping to RAG when we don’t even know...

Whether we can even deploy an LLM or use a third-party API
Whether hallucinations are even acceptable for this domain
If we're legally allowed to paraphrase documents

How fast our knowledge base changes

If chunking the data is viable

Whether retrieval is even the bottleneck

It may be the case that BM25 retrieval system + a small, span-based QA model may be
better.

©2025 mozilla.ai | Confidential and proprietary.

22

http://mozilla.ai

Mozilla.oi

Requirements

Traditional SE Machine Learning SE

Requirements Traceability

Keep link between intent -> design -> test ->
operations

Clear Functional Requirements

Stating what the system must do—not how
Performance Requirements

Latency, throughput, accuracy thresholds
Constraints & Assumptions

Document physical, organizational, technical limits
Verification Planning

Defining measures of performance (MoPs) and
measures of effectiveness (MoEs)

©2025 mozilla.ai | Confidential and proprietary.

Degraded Mode Requirements

The system will misbehave frequently. What should
happen when it does?

Document Assumptions

You will have lots.

Anti-Magic Requirements

Every end-to-end functionality of the system should
be observable and falsifiable

Human-in-the-loop Requirements

How and when do people intervene, override, or
course-correct?

Data Sourcing, Drift, and Freshness

How do we keep the system up-to-date?

23

http://mozilla.ai
http://mozilla.ai

Mozilla.oi

Example — Requirements

“The system shall generate SQL queries from natural language with 95%
accuracy.”

What is wrong here?

©2025 mozilla.ai | Confidential and proprietary.

24

http://mozilla.ai

Mozilla.oi

Example — Requirements

“The system shall generate SQL queries from natural language with 95%
accuracy.”

What is wrong here?

Accuracy of what, exactly?

e SQL correctness isn’t binary: syntax, semantics, joins, cardinality, permissions,
cost.
A query can be “correct” syntactically and still return nonsense or leak data.
“Accuracy” means something different to users, analysts, DBAs, and ML folks —
which one is this requirement talking about?

e And are we assuming it will generate some SQL 100% of the time? What counts as - iy

“accurate” when the model refuses?

©2025 mozilla.ai | Confidential and proprietary.

25

http://mozilla.ai

Mozilla.oi

Design & Specification

Traditional SE

Goal: Build a system whose components interact cleanly and
predictably

Design Assumptions: Interface is stable, behavior is
deterministic, and components behave correctly unless
broken

Design Strategies:

Clear subsystem boundaries

Frozen interfaces

Trade studies

No hidden side effects

Integration is primarily a coordination problem

©2025 mozilla.ai | Confidential and proprietary.

Machine Learning SE

Goal: Build a system whose failures are observable and
contained

Design Assumptions: The model is unpredictable, “correct”
behavior is ill-defined, users will behave adversarially

Design Strategies:

Composability over cleverness
Guardrail-first design
Instrumentation, not intuition
Containment boundaries

26

http://mozilla.ai
http://mozilla.ai

Mozilla.oi

Example — Design & Specification

“We’ll let the LLM decide when to use tools based on ReAct. It can call
whatever it needs.”

What is wrong here?

©2025 mozilla.ai | Confidential and proprietary.

Thought

[

Action

\

Execution

27

http://mozilla.ai

Mozilla.oi

Example — Designh & Specification

“We’ll let the LLM decide when to use tools based on ReAct. It can call
whatever it needs.”

What is wrong here?

e Ungoverned loops hide failure
If the agent can invent steps on the fly, you can’t tell where it went off the rails —
only that the output is wrong. An explicitly defined finite state machine forces
failure to happen in public.

e Unconstrained behavior = bad
You shouldn’t assume that an agent can select the correct tool to call from an
unconstrained set at every step.

e Safety demands a closed action space
If the model can transition to any action at any time, you can’t enforce guardrails.

©2025 mozilla.ai | Confidential and proprietary.

Thought

[

Action

\

Execution

28

http://mozilla.ai

Mozilla.oi

Verification & Validation

Traditional SE

e Verification = “Did we build it right?”
Tests map cleanly to requirements. Behavior is
deterministic.
Measured with MoPs

e Validation = “Did we build the right thing?”
Traceable to mission goals. Human acceptance is
stable.
Measured with MoEs

e Evaluation is finite.
Test cases are enumerable and exhaustive. Pass/fail
is crisp.

©2025 mozilla.ai | Confidential and proprietary.

Machine Learning SE

Verification requires coverage, not cases.

Inputs are unbounded. Behavior is probabilistic. You
test distributions, not conditions.

Validation never finishes.

User behavior shifts. Data drifts. Context changes.
You don’t validate once — you validate forever.
Emergent failures demand ongoing evals.

Models develop new behaviors post-deployment.
Silent degradation is the norm unless you explicitly
measure for it.

Evaluation must be designed for adversarial
behavior

Users will misuse and abuse the system in ways you
could not even imagine.

29

http://mozilla.ai
http://mozilla.ai

Mozilla.oi

Example — Verification & Validation

“We’ll have an LLM evaluate model outputs for correctness.”

What is wrong here?

©2025 mozilla.ai | Confidential and proprietary.

30

http://mozilla.ai

Mozilla.oi

Example — Verification & Validation

“We’ll have an LLM evaluate model outputs for correctness.”

What is wrong here?

e You are adding more failure modes to the system.
If the judge and the model share failure modes, biases, or blind spots (they will),
the judge just rubber-stamps errors.

e LLM judges hallucinate confidence in a way that is dangerous.
You are effectively measuring vibes.

e “Correctness” is not well-defined.
An LLM-judge’s scoring depends on phrasing, temperature, token entropy, the list
goes on. These don’t yield metrics. These yield weather patterns.

e Distribution mismatch is lethal.
Your judge is validated on curated benchmarks, but deployed on messy,
real-world data.

©2025 mozilla.ai | Confidential and proprietary.

31

http://mozilla.ai

Mozilla.ai

Would you trust an LLM to
judge your compatibility with
another human?

Great! Regulators wouldn’t,
either.

©2025 mozilla.ai | Confidential and proprietary.

http://mozilla.ai

Mozilla.oi

Risk

©2025 mozilla.ai | Confidential and proprietary.

33

http://mozilla.ai

Mozilla.oi

The Cassandra Complex

The curse of seeing a failure coming long before anyone
else — and not being believed until it’s too late.

It’s less “prophecy,” more “unwelcome accuracy
delivered early.”

©2025 mozilla.ai | Confidential and proprietary.

34

http://mozilla.ai
http://mozilla.ai

Mozilla.oi

Have you ever felt like a Cassandra at an AI company?

©2025 mozilla.ai | Confidential and proprietary. 35

http://mozilla.ai

Mozilla.oi

AI companies like to dodge risk.

©2025 mozilla.ai | Confidential and proprietary.

http://mozilla.ai

Mozillo.oti

Having a Systems Engineer... Helps.

Gives structural legitimacy to risk—a
person to own it

"I have a bad feeling" - "Here's the failure
mode, likelihood, and mitigation options"

Adds new dimension to institutional
memory

©2025 mozilla.ai | Confidential and proprietary.

37

http://mozilla.ai
http://mozilla.ai

Mozilla.ai

Systems Engineers & Risk
(alt. What they don’t teach you in SE school)

/7;;ft>;\\
Cassandra duty

Listening to the people who
see the cracks before anyone
else—especially when no one
else will

©2025 mozilla.ai | Confidential and proprietary.

Jester’s privilege (...or
curse)

Saying the quiet part out loud
that no one else wants to hear

Risk without panic

Communicating danger
without triggering shutdown
or denial

Emotional buffer

Holding the anxiety so others

can keep building

38

http://mozilla.ai

Mozilla.oi

The Risk Registry

What it is: A living list of everything that could break the system, how likely it is, and
what we’re doing about it.

The rules:

e One owner keeps the map coherent. Everyone else contributes where they see
landmines.

e Everything goes in the risk registry. No matter how large or small.

e Periodically reviewed at a cadence that works for your team.

Why it works:

Keeps risk visible instead of ambient

Gives everyone a space to voice concerns and feel heard
Prevents rediscovering the same failure twice

Weirdly... speeds up shipping

©2025 mozilla.ai | Confidential and proprietary.

39

http://mozilla.ai

Mozilla.oi

Stop asking ‘is this going to
happen?’

Start asking ‘when it does,
what’s our plan?’

©2025 mozilla.ai | Confidential and proprietary.

http://mozilla.ai

Mozilla.oi

Interactive
Session

©2025 mozilla.ai | Confidential and proprietary.

http://mozilla.ai

Mozilla.oi

Check out our GitHub!

besaleli@mozilla.ai

@besssaleli on X

©2025 mozilla.ai | Confidential and proprietary.

http://mozilla.ai

